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ABSTRACT. We interpret the combinatorial Mandelbrot set in terms of quadratic lamina-
tions (equivalence relations ∼ on the unit circle invariant under σ2). To each lamination
we associate a particular geolamination (the collectionL∼ of points of the circle and edges
of convex hulls of ∼-equivalence classes) so that the closure of the set of all of them is a
compact metric space with the Hausdorff metric. Two such geolaminations are said to be
minor equivalent if their minors (images of their longest chords) intersect. We show that
the corresponding quotient space of this topological space is homeomorphic to the bound-
ary of the combinatorial Mandelbrot set. To each equivalence class of these geolaminations
we associate a unique lamination and its topological polynomial so that this interpretation
can be viewed as a way to endow the space of all quadratic topological polynomials with a
suitable topology.

Introduction

Studying the structure of polynomial families is one of the central problems of com-
plex dynamics. The first non-trivial case here is that of quadratic polynomial family
Pc(z) = z2 + c. The Mandelbrot set M2 is defined as the set of the parameters c such
that the trajectory of the critical point 0 of Pc does not escape to infinity under iterations
of Pc. Equivalently, this is the set of all parameters c such that the Julia set J(Pc) of Pc is
connected.

Thurston [Thu85] constructed a combinatorial model for M2, which can be inter-
preted as follows. Laminations are closed equivalence relations ∼ on the unit circle S in
the complex plane C such that all classes are finite and the convex hulls of all classes are
pairwise disjoint. A lamination is said to be (σd-) invariant if it is preserved under the map
σd(z) = zd : S → S (precise definitions are given in the next section; if no ambiguity is
possible, we will simply talk about invariant laminations). The map σd induces a topolog-
ical polynomial f∼ : S/ ∼→ S/ ∼ from the topological Julia set J∼ = S/ ∼ to itself. If
J(Pc) is locally connected, then Pc|J(Pc) is conjugate to f∼ for a specific lamination ∼. If
d = 2, then corresponding laminations, topological polynomials and Julia sets are said to
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be quadratic. The precise definitions are given later in the paper (in particular, topological
polynomials and topological Julia sets are defined in Subsection 1.1).

Even though M2 ⊂ C has a natural topology, the proper topology on the set of all
quadratic topological polynomials is much more elusive. Thurston constructed a suitable
topology on this set by associating to each (quadratic) lamination ∼ a geometric object
L∼, called a (quadratic) geolamination, which consists of all chords in the boundaries of
the convex hulls (in the closed unit disk) of all equivalence classes of ∼.

Quadratic geolaminations are invariant under the map σ2. In particular given a chord
` = ab ∈ L, with endpoints a, b ∈ S, the chord σ2(a)σ2(b) is also a (possibly degenerate)
chord of L and we write σ2(`) = σ2(a)σ2(b). Thurston parameterizes all such geolamina-
tions L by the minors mL of L; the minor mL of a quadratic geolamination L is the image
of a chord in L of maximal length. Thurston shows that the collection of minors of all
σ2-invariant geolaminations is itself a geolamination, which we denote here by LQML. It
turns out that LQML defines a lamination that Thurston called QML (for quadratic minor
lamination). Leaves of LQML are exactly edges of convex hulls of classes of QML. The
quotient S/QML provides the proper topology on the set of quadratic topological poly-
nomials, which serves as a model for the boundary of M2. Observe that there exists a
monotone map p : Bd(M2)→ S/QML [Sch09] (cf [Thu85, Kel00]).

FIGURE 1. The Mandel-
brot set

FIGURE 2. The
(geo)lamination LQML

In the higher degree case no such parameterization of the set of σd-invariant lamina-
tions is known. In particular, the proper topology on the set of topological polynomials
of degree d is not clear. Since the set of all σd-invariant geolaminations carries a natural
topology, induced by the Hausdorff distance between the unions of their leaves, it is nat-
ural to impose this topology on the set of geolaminations. It is well known that with this
topology the space of geolaminations is a compact metric space. In this paper we consider
a suitable compact subspace of the space of all invariant quadratic geolaminations with
the Hausdorff metric. On this subspace we define a closed equivalence relation with finite
equivalence classes. We show that each class corresponds to a unique σ2-invariant lamina-
tion and, hence, a unique quadratic topological polynomial. Finally we prove that with the
induced topology the corresponding quotient space is homeomorphic to S/QML.

The long term hope is to use the ideas from this paper to impose a proper topology on
the set of degree d topological polynomials and use it to obtain a combinatorial model for
the boundary of the connectedness locusMd of the space of degree d polynomials. The
analogy with polynomials is underlined by some of our rigidity results for laminations,
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which parallel those for polynomials. For example, we show in this paper that if the geo-
lamination L is a limit of geolaminations Li corresponding to laminations ∼i and if G is a
finite gap of L, then G is also a gap Li for all large i.
Acknowledgements. The paper was partially written as the first named author was vis-
iting Max-Planck-Institut für Mathematik in Bonn during their activity “Dynamics and
Numbers”. He would like to express his appreciation to the organizers and Max-Planck-
Institut für Mathematik for inspiring working conditions. It is our pleasure to also thank
the referee for thoughtful and useful remarks.

1. Preliminaries

A big portion of this section is devoted to (geo)laminations, a major tool in studying
both dynamics of individual complex polynomials and in modeling certain families of
complex polynomials (the Mandelbrot set, which can be thought of as the family of all
polynomials Pd = z2 + c with connected Julia set). Let a, b ∈ S. By [a, b], (a, b), etc we
mean the closed, open, etc positively oriented circle arcs from a to b, and by |I| the length
of an arc I in S normalized so that the length of S is 1.

1.1. Laminations. Denote by Ĉ the Riemann sphere. For a compactum X ⊂ C, let
U∞(X) be the unbounded component of Ĉ \ X containing infinity. If X is connected,
there exists a Riemann mapping ΨX : Ĉ \ D → U∞(X); we always normalize it so that
ΨX(∞) =∞ and Ψ′X(z) tends to a positive real limit as z →∞.

Consider a polynomial P of degree d ≥ 2 with Julia set JP and filled-in Julia set
KP . Extend zd = σd : C → C to a map θd on Ĉ. If JP is connected, then ΨJP

= Ψ :

Ĉ \D→ U∞(KP ) is such that Ψ ◦ θd = P ◦Ψ on the complement of the closed unit disk
[DH85, Mil00]. If JP is locally connected, then Ψ extends to a continuous function

Ψ : Ĉ \ D→ Ĉ \KP ,

and Ψ◦ θd = P ◦Ψ on the complement of the open unit disk; thus, we obtain a continuous
surjection Ψ: Bd(D)→ JP (the Carathéodory loop); throughout the paper by Bd(X) we
denote the boundary of a subset X of a topological space. Identify S = Bd(D) with R/Z.
In this case set ψ = Ψ|S.

Define an equivalence relation ∼P on S by x ∼P y if and only if ψ(x) = ψ(y), and
call it the (σd-invariant) lamination of P ; since Ψ defined above conjugates θd and P , the
map ψ semiconjugates σd and P |J(P ), which implies that ∼P is invariant. Equivalence
classes of∼P have pairwise disjoint convex hulls. The topological Julia set S/ ∼P = J∼P

is homeomorphic to JP , and the topological polynomial f∼P
: J∼P

→ J∼P
, induced by

σd, is topologically conjugate to P |JP
.

An equivalence relation ∼ on the unit circle, with similar properties to those of ∼P

above, can be introduced abstractly without any reference to the Julia set of a complex
polynomial.

DEFINITION 1.1 (Laminations). An equivalence relation ∼ on the unit circle S is
called a lamination if it has the following properties:
(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

For a closed set A ⊂ S we denote its convex hull by CH(A). Then by an edge of
CH(A) we mean a closed segment I of the straight line connecting two points of the unit
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circle such that I is contained in the boundary Bd(CH(A)) of CH(A). By an edge of a
∼-class we mean an edge of the convex hull of that class.

DEFINITION 1.2 (Laminations and dynamics). A lamination ∼ is (σd-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(D2) for any ∼-class g, the map σd : g→ σd(g) extends to S as an orientation preserving
covering map such that g is the full preimage of σd(g) under this covering map.

Again, if this does not cause ambiguity, we will simply talk about invariant lamina-
tions.

Definition 1.2 (D2) has an equivalent version. Given a closed set Q ⊂ S, a (positively
oriented) hole (a, b) of Q (or of CH(Q)) is a component of S \Q. Then (D2) is equivalent
to the fact that for a ∼-class g either σd(g) is a point or for each positively oriented hole
(a, b) of g the positively oriented arc (σd(a), σd(b)) is a hole of σd(g). From now on, we
assume that, unless stated otherwise, ∼ is a σd-invariant lamination.

FIGURE 3. The Julia set of
f(z) = z2 − 1 (so-called
“basilica”)

FIGURE 4. The
(geo)lamination for
the Julia set of z2 − 1

Given∼, consider the topological Julia set S/ ∼= J∼ and the topological polynomial
f∼ : J∼ → J∼ induced by σd. Using Moore’s Theorem, embed J∼ into C and extend the
quotient map ψ∼ : S → J∼ to C with the only non-trivial fibers being the convex hulls
of non-degenerate ∼-classes. A Fatou domain of J∼ (or of f∼) is a bounded component
of C \ J∼. If U is a periodic Fatou domain of f∼ of period n, then fn∼|Bd(U) is either
conjugate to an irrational rotation of S or to σk with some 1 < k ≤ d [BL02]. In the
case of irrational rotation, U is called a Siegel domain. The complement of the unbounded
component of C \ J∼ is called the filled-in topological Julia set and is denoted by K∼.
Equivalently, K∼ is the union of J∼ and its bounded Fatou domains. If the lamination ∼
is fixed, we may omit ∼ from the notation. By default, we consider f∼ as a self-mapping
of J∼. For a collectionR of sets, denote the union of all sets fromR byR+.

DEFINITION 1.3 (Leaves). If A is a ∼-class, call an edge ab of CH(A) a leaf (of ∼).
All points of S are also called (degenerate) leaves (of ∼).

The family of all leaves of ∼ is closed (the limit of a sequence of leaves of ∼ is a
leaf of ∼); the union of all leaves of ∼ is a continuum. Extend σd (keeping the notation)
linearly over all individual leaves of ∼ in D. In other words, for each leaf of ∼ we define
its own linear map; note that in the end even though the extended σd is not well defined on
the entire disk, it is well defined on the union of all leaves of ∼.
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1.2. Geometric laminations. The connection between laminations, understood as
equivalence relations, and the original approach of Thurston’s [Thu85] can be explained
once we introduce a few key notions. Assume that∼ is a σd-invariant lamination. Thurston
studied collections of chords in D similar to collections of leaves of∼ with no equivalence
relation given.

DEFINITION 1.4 (Geometric laminations, cf. [Thu85]). Two distinct chords in D are
said to be unlinked if they meet at most in a common endpoint; otherwise they are said
to be linked, or to cross each other. A geometric pre-lamination L is a set of (possibly
degenerate) chords in D such that any two distinct chords from L are unlinked; L is called
a geolamination if all points of S are elements of L, and L+ is closed. Elements of L are
called leaves of L. By a degenerate leaf (chord) we mean a singleton in S. The continuum
L+ ⊂ D is called the solid (of L).

Important objects related to a geolamination are its gaps.

DEFINITION 1.5 (Gaps). Let L be a geolamination. The closure in C of a non-empty
component of D\L+ is called a gap of L. IfG is a gap or a leaf, call the setG′ = S∩G the
basis of G. A gap is said to be finite (infinite, countable, uncountable) if its basis is finite
(infinite, countable, uncountable). Uncountable gaps are also called Fatou gaps. Points of
G′ are called vertices of G.

Now let us discuss geolaminations in the dynamical context. A chord (e.g., leaf of a
(geo)lamination) is called (σd-)critical if its endpoints have the same image under σd. If
it does not cause ambiguity, we will simply talk about critical chords. Definition 1.6 was
introduced in [Thu85].

DEFINITION 1.6 (Invariant geolaminations in the sense of Thurston). A geolamina-
tion L is said to be (σd-)invariant in the sense of Thurston if the following conditions are
satisfied:

(1) (Leaf invariance) For each leaf ` ∈ L, the set σd(`) is a leaf in L (if ` is critical,
then σd(`) is degenerate). For a non-degenerate leaf ` ∈ L, there are d pairwise
disjoint leaves `1, . . . , `d ∈ L with σd(`i) = `, 1 ≤ i ≤ d.

(2) (Gap invariance) For a gap G of L, the set H = CH(σd(G′)) is a point, a leaf,
or a gap of L, in which case σd : Bd(G) → Bd(H) is a positively oriented
composition of a monotone map and a covering map (thus if G is a gap with
finitely many edges all of which are critical, then its image is a singleton).

Again, if it does not cause ambiguity we will simply talk about geolaminations which
are invariant in the sense of Thurston.

We will use a special extension σ∗d,L = σ∗d of σd to the closed unit disk associated
with L. On S and all leaves of L, we set σ∗d = σd. Define σ∗d on the interiors of gaps using
a standard barycentric construction [Thu85]. For brevity, we sometimes write σd instead
of σ∗d .

A useful fact about (σd-invariant) geolaminations in the sense of Thurston is that we
can define a topology on their family by identifying each (σd-invariant) geolamination L
with its laminational solidL+ and using the Hausdorff metric on this family of laminational
solids. This produces a compact metric space of laminational solids.

The most natural situation, in which σd-invariant geolaminations in the sense of Thurston
appear deals with σd-invariant laminations.
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DEFINITION 1.7. Suppose that ∼ is a (σd-invariant) lamination. The family L∼
of all leaves of ∼ is called the geolamination generated by ∼ or a (σd-invariant) q-
geolamination.

The example below shows that not all invariant geolaminations in the sense of Thurston
are sibling invariant. Suppose that points x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2 are positively ordered on S
and H = CH(x̂1ŷ1ẑ1x̂2ŷ2ẑ2) is a critical hexagon of an invariant q-geolamination L such
that σ∗d : H → T maps H in the 2-to-1 fashion onto the triangle T = CH(xyz) with
σd(x̂i) = x, σd(ŷi) = y, σd(ẑi) = z. Now, add to the geolamination L the leaves x̂1ẑ1
and x̂1x̂2 and all their pullbacks along the backward orbit of H under σ∗d . Denote the thus
created geolamination L′. It is easy to see that L′ is invariant in the sense of Thurston
but not sibling invariant because x̂1ẑ1 = ` cannot be completed to a full sibling collection
(clearly, H does not contain siblings of `).

x̂1ŷ1
ẑ1

x̂2

ŷ2

ẑ2

x = σd(x̂i)

y = σd(ŷi)

z = σd(ẑi)

H

T

FIGURE 5. An example of a geolamination invariant in the sense of
Thurston which is not sibling invariant. The leaf x̂1ẑ1 has no siblings
in H .

Another example can be given in the case of quadratic (i.e., σ2-invariant) geolamina-
tions; since it will be used in what follows we describe it separately.

EXAMPLE 1.8. Construct a quadratic geolamination L12 as follows. Start L12 with
the chord 0 1

2 = Di (this is the first step in the construction). Then, on the second step, add
to L12 one first pullback of Di under σ2 unlinked with Di, namely, the chord 1

4
1
2 . Then,

on the third step, add one first pullback of 1
4
1
2 , namely, 1

8
1
4 . Continue this construction so

that on the n-th step we add the leaf 2−n2−n+1. This creates a gap G located above Di.
Then construct a sibling gap G′ of G by rotating G by the angle π. From this moment
on we can pull back G and G′ (or, equivalently, their edges) choosing for each leaf its
uniquely defined two pullbacks which do not cross the already constructed leaves (the
pullback construction of an invariant geolamination with given critical leaves is actually
due to Thurston and is used a lot in his preprint [Thu85]). In the end we will obtain an
invariant geolaminations in the sense of Thurston. It is easy to see that this is not a q-
geolamination. Gaps similar to G are actually called caterpillar gaps (see Definition 1.14
given below).
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G

G′

1
2 0

1
4

3
4

1
8

5
8

3
8

7
8

1
16

9
16

FIGURE 6. An example of a geolamination which is not a q-geolamination

It is easy to see that our terminology is consistent in the sense that (σd-invariant)
q-geolaminations satisfy properties from Definitions 1.4 and 1.6 and are, therefore, (σd-
invariant) geolaminations. In what follows we talk interchangeably about leaves (gaps) of
∼ or leaves (gaps) of L∼.

DEFINITION 1.9 (Critical gaps). A gap G of a (geo)lamination is said to be
(σd-)critical if for each y ∈ σd(G′) the set σ−1d (y) ∩G′ consists of at least 2 points.

If it does not cause ambiguity, we will simply talk about critical gaps.
Slightly abusing the language, we will call the family of all degree d polynomials

with connected Julia sets the connectedness locus of degree d. As was explained above,
σd-invariant laminations are naturally related to polynomials with locally connected Julia
sets.

However this leaves us with a problem of associating laminations (or related objects)
to polynomials P whose Julia sets are not locally connected. As one of the central prob-
lems in complex dynamics is studying polynomials with connected Julia sets, in our paper
we consider this issue only for such polynomials. A natural approach here is as follows.
Suppose that P is a polynomial of degree d with connected but not locally connected Ju-
lia set. Consider a sequence of polynomials Pi → P with locally connected Julia sets JPi

(this is always possible in the quadratic case). As we explained above, such polynomials Pi

generate their canonical laminations ∼Pi
. One can hope to use the appropriately designed

limit transition and thus to define the limit lamination ∼P associated with P .
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To this end we consider q-geolaminations LPi
and associated with them continua L+

Pi
.

Assume that these continua converge to a continuum in D, which itself is the union of pair-
wise unlinked chords in D. These chords form a family of chords, which turns out to be
a σd-invariant geolamination (see Definition 1.6). However, this geolamination cannot be
associated with P in a canonical way as we assumed that JP is not locally connected.
Also, depending on the polynomial P it may happen that more than one limit geolam-
ination can be associated with P as above. Nevertheless, at least in the quadratic case
there are only finitely many such limit geolaminations. Denote this finite collection of limit
geolaminations by L(P ).

The idea is to associate to the collection L(P ) a unique lamination ∼P and its q-
geolamination L∼P

and to declare them generated by P . Thus, to each polynomial P
we associate two objects: a collection L(P ) of its limit geolaminations, and, on the other
hand, the corresponding lamination ∼P uniquely associated with the collection L(P ). If
now we consider these collections L(P ) of limit geolaminations as classes of equivalence
and factor the closure of the space of all q-geolaminations accordingly, we get a quotient
space. This quotient space topologizes the set of all quadratic laminations (or, equivalently,
the set of all quadratic topological polynomials).

To sum it all up, one can say, that from the point of view of polynomials only lami-
nations and q-geolaminations are important. It follows that to understand the structure of
the connectedness locus of degree d it is natural to study the closure of all σd-invariant
laminations. Thus, we need to define a suitable topology on the family of all σd-invariant
laminations, which would reflect the topology of the connectedness locus.

Our approach to this problem is as follows. First, following Thurston we associate to
each σd-invariant lamination ∼ its q-geolamination L∼. To define a suitable topology on
the family of all σd-invariant q-geolaminations one can identify this family with the family
of their laminational solids endowed with the Hausdorff metric. However, taken “as is” the
resulting topological space cannot serve its purpose because the limit of laminational solids
of q-geolaminations often is not a laminational solid of a q-geolamination (even though by
the remark above this limit is a laminational solid of some σd-invariant geolamination).
Thus, even if a sequence of q-geolaminations is such that their solids converge to a solid
of a σd-invariant geolamination, we cannot directly associate a q-geolamination to this
limit. This justifies our study of limit geolaminations (more precisely, of geolaminations
that are limits of σd-invariant q-geolaminations), which is done for an arbitrary degree d in
Section 2.

We overcome the obstacle just described in the case when d = 2 (we call all σ2-
invariant laminations and geolaminations quadratic) as follows. Take all q-geolaminations
and limits of their laminational solids. The resulting compact metric space of laminational
solids is then factored according to a specific natural equivalence related to studying and
comparing critical sets of quadratic q-geolaminations and their limits. In this way we
construct the appropriate quotient space of the space of laminational solids of all quadratic
q-geolaminations and their limits in the Hausdorff metric (using our identifications we
can also talk about the quotient space of the space of all quadratic q-geolaminations and
their limits). We then prove that this quotient space is homeomorphic to the combinatorial
Mandelbrot setMcomb.

To implement our program we will work with so-called sibling (σd-invariant) geo-
laminations. They form a closed subspace of the space of all σd-invariant geolaminations,
which still contains all q-geolaminations (in other words, q-geolaminations and all their
limits are sibling σd-invariant). Since our main interest lies in studying q-geolaminations
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and their limits, it will be more convenient to work with sibling σd-invariant geolamina-
tions than with σd-invariant geolaminations in the sense of Thurston. Other advantages of
working with sibling σd-invariant geolaminations are that they are defined through proper-
ties of their leaves (gaps are not involved in the definition) and that the space of all of them
is smaller (and hence easier to deal with) than the space of all σd-invariant geolaminations.

DEFINITION 1.10. A geolamination L is sibling (σd-)invariant provided:
(1) for each ` ∈ L, we have σd(`) ∈ L,
(2) for each ` ∈ L there exists `′ ∈ L so that σd(`′) = `.
(3) for each ` ∈ L so that σd(`) = `′ is a non-degenerate leaf, there exist d disjoint

leaves `1, . . . , `d in L so that ` = `1 and σd(`i) = `′ for all i = 1, . . . , d.

Let us list a few properties of sibling σd-invariant geolaminations.

THEOREM 1.11 ([BMOV13]). Sibling σd-invariant geolaminations are invariant in
the sense of Thurston. The space of all sibling σd-invariant geolaminations is compact. All
geolaminations generated by σd-invariant laminations are sibling σd-invariant.

While by Theorem 1.11 all sibling σd-invariant geolaminations are invariant in the
sense of Thurston, the opposite is not true already for quadratic geolaminations. Indeed,
consider Example 1.8 and the geolamination L12 suggested there. Amend L12 by remov-
ing the chord 1

2
3
4 and all its pullbacks. Then the amended geolaminations La

12 remains
Thurston invariant, however it is no loner sibling σ2-invariant. Indeed, a leaf 0 1

4 ∈ L
1
12

does not have a disjoint sibling leaf as the only sibling leaf it has is the leaf 1
4
1
2 which is

non-disjoint from 0 1
4 .

Let us now discuss gaps in the context of σd-invariant (geo)laminations.

DEFINITION 1.12 (Periodic and (pre)periodic gaps). Let G be a gap of an invariant
geolamination L. If the map σd restricted on G′ extends to Bd(G) as a composition of
a monotone map and a covering map of some degree m, then m is called the degree of
σd|G. A gap/leaf U of L∼ is said to be (pre)periodic of period k if σm+k

d (U ′) = σm
d (U ′)

for some m ≥ 0, k > 0; if m, k are chosen to be minimal, then if m > 0, U is called
preperiodic, and, if m = 0, then U is called periodic (of period k). If the period of G is 1,
then G is said to be invariant. We define precritical and (pre)critical objects similarly to
how (pre)periodic and preperiodic objects are defined above.

A more refined series of definitions deals with infinite periodic gaps of sibling σd-
invariant (geo)laminations. There are three types of such gaps: caterpillar gaps, Siegel
gaps, and Fatou gaps of degree greater than one. We define them below. Observe that by
[Kiw02] infinite gaps eventually map onto periodic infinite gaps. First we state (without a
proof) a very-well known folklore lemma about edges of preperiodic (in particular, infinite)
gaps.

LEMMA 1.13. Any edge of a (pre)periodic gap is either (pre)periodic or (pre)critical.

Let us now classify infinite gaps.

DEFINITION 1.14. An infinite gap G is said to be a caterpillar gap if its basis G′ is
countable (see Figure 6).

As as an example, consider a periodic gap Q such that:
• The boundary of Q consists of a periodic leaf `0 = xy of period k, a critical

leaf `−1 = yz concatenated to it, and a countable concatenation of leaves `−n
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accumulating at x (the leaf `−r−1 is concatenated to the leaf `−r, for every r = 1,
2, . . . ).

• We have σk(x) = x, σk({y, z}) = {y}, and σk maps each `−r−1 to `−r (all
leaves are shifted by one towards `0 except for `0, which maps to itself, and `−1,
which collapses to the point y).

The description of σ3-invariant caterpillar gaps is in [BOPT13]. In general, the fact
that the basis G′ of a caterpillar gap G is countable implies that there are lots of concate-
nated edges of G. Other properties of caterpillar gaps can be found in Lemma 1.15.

LEMMA 1.15. Let G be a caterpillar gap of period k. Then the degree of σk
d |G is one

and G′ contains some periodic points.

PROOF. We may assume that k = 1. Consider σd|Bd(G). It is well-known that if the
degree r of σd|Bd(G) is greater than one, then there is a monotone map ψ : Bd(G) → S
that semiconjugates σd|Bd(G) and σr|S (see, e.g., [Blo86, Blo87a, Blo87b] where a similar
claim is proven for “graph” maps). Take the set B all points of Bd(G) that do not belong
to open segments in Bd(G), on which ψ is constant (such sets are said to be basic in
[Blo86, Blo87a, Blo87b]).

Edges of G must be collapsed to points under ψ because otherwise their ψ-images
would have an eventual σd-image covering the whole S while by Lemma 1.13 any edge of
G eventually maps to a point or to a periodic edge of G and cannot have the image that is
so big. Since B is clearly uncountable, we get a contradiction.

If now the degree of σd|Bd(G) is one, then it is well known [AK79, Blo84] that either
(1) σd|Bd(G) is monotonically semiconjugate to an irrational rotation by a map ψ, or (2)
σd|Bd(G) has periodic points. Take the set B of all points of Bd(G) that do not belong
to open segments in Bd(G), on which ψ is a constant. If case (1), then, similarly to the
above, the edges of G must be collapsed to points under ψ because otherwise there would
exist a finite union of their ψ-images covering the whole S while by Lemma 1.13 any
edge of G eventually maps to a point or to a periodic edge of G. Hence B is uncountable
contradicting the definition of a caterpillar gap. Thus, (2) holds. �

DEFINITION 1.16. A periodic Fatou gap G of period n is said to be a periodic Siegel
gap if the degree of σn

d |G is 1 and the basis G′ of G is uncountable.

The next lemma is well-known, a part of it was actually proven in the proof of Lemma 1.15.

LEMMA 1.17. Let G be a Siegel gap of period n. Then the map σn
d |Bd(G) is mono-

tonically semiconjugate to an irrational circle rotation and contains no periodic points. A
periodic Siegel gap must have at least one image that has a critical edge.

The following definition completes our series of definitions.

DEFINITION 1.18. A periodic Fatou gap is of degree k > 1 if the degree of σn
d |Bd(G)

is k > 1. If the degree of a Fatou gap G is 2, then G is said to be quadratic.

The next lemma is well-known.

LEMMA 1.19. Let G be a Fatou gap of period n and of degree k > 1. Then the map
σn
d |Bd(G) is monotonically semiconjugate to σk.

2. Limit geolaminations and their properties

In this section we study properties of limits of σd-invariant q-geolaminations (as ex-
plained above, convergence of geolaminations is understood as convergence of their lam-
inational solids in the Hausdorff metric). Fix the degree d. We prove a few lemmas, in
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which we assume that a sequence of σd-invariant q-geolaminations Li converges to a sib-
ling σd-invariant geolamination L∞. By an (open) strip we mean a part of the unit disk
contained between two disjoint chords. By an (open) strip around a chord ` we mean a
strip containing `. In what follows when talking about convergence of leaves/gaps, close-
ness of leaves/gap, and closures of families of geolaminations we always mean this in the
Hausdorff metric on the space of their laminational solids.

DEFINITION 2.1. Let Lq
d be the family of all σd-invariant q-geolaminations. Let Lq

d be
the closure of Lq

d in the compact space of all subcontinua of D with the Hausdorff metric:
we take the closure of the family of laminational solids of geolaminations from Lq , for
each limit continuum consider the corresponding geolamination, and denote the family of
all such geolaminations by Lq

d.

Even though we will prove below a few general results, we mostly concentrate upon
studying periodic objects of limits of σd-invariant q-geolaminations.

LEMMA 2.2. Let L ∈ Lq
d, ` = ab be a periodic leaf of L. If L̂ ∈ Lq

d is sufficiently
close to L, then any leaf of any L̂ sufficiently close to ` is either equal to ` or disjoint from
`. Moreover, if Li → L,Li ∈ Lq

d, then for any ε > 0 there is N = N(ε) such that any leaf
of Li (i > N) is disjoint from ` or intersects ` at a point z that is ε-close to {a, b}.

PROOF. If a leaf ˆ̀ 6= ` is a leaf of a q-geolamination that is very close to ` and
non-disjoint from `, then it must cross ` (if ˆ̀ shares an endpoint with `, then the other
endpoint of ˆ̀must be periodic of the same period as a and b and hence ˆ̀cannot be close
to `). However, then it would follow that σn

d (ˆ̀) crosses ˆ̀ (here n is such that σn
d (a) =

a, σn
d (b) = b), a contradiction. This proves the first claim.
Now, let Li → L,Li ∈ Lq

d. Choose N = N(ε) so that each geolamination Li, i > N

has a leaf `i that is much closer to ` than ε. If Li has a leaf ˆ̀
i 6= ` intersecting ` at a

point z with d(z, {a, b}) ≥ ε, then, since ˆ̀
i does not cross `i, the leaf ˆ̀will be close to `,

contradicting the above. �

Definition 2.3 introduces the concept of rigidity.

DEFINITION 2.3. A leaf/gap G of L is rigid if any q-geolamination close to L has G
as its leaf/gap.

Periodic leaves of geolaminations are either edges of gaps or limits of other leaves;
consider these two cases separately.

LEMMA 2.4. Let L ∈ Lq
d, and let ` = ab be a periodic leaf of L that is not an edge of

a gap of L. Then ` is rigid.

PROOF. By the assumption, arbitrarily close to ` on either side of ` there are leaves
`l 6= ` and `r 6= `. Observe that leaves `l and `r may share an endpoint with `, still either
leaf has at least one endpoint on the appropriate side of `. Choose them very close to `.
Now, choosing a q-geolamination L̂ ∈ Lq

d very close to L we may choose leaves ˆ̀l ∈ L̂
and ˆ̀r ∈ L̂ very close to `l and `r. Since `l and `r are very close to `, by Lemma 2.2 the
leaves ˆ̀l, ˆ̀r either coincide with ` or are disjoint from `. Since `l 6= ` and `r 6= `, we have
ˆ̀l 6= ` and ˆ̀r 6= `. Thus, the leaves ˆ̀l and ˆ̀r are disjoint from `. This and the choice of the
leaves `l and `r implies that ˆ̀l and ˆ̀r are the edges of a narrow strip Ŝ around `. Choose
n so that σn

d (a) = a and σn
d (b) = b. Then L̂ has a pullback-leaf of ˆ̀l inside Ŝ whose

endpoints are even closer to a and b. Repeating this, we see that ` is a leaf of L̂. Thus, ` is
rigid. �
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To study periodic edges of gaps we use Lemma 2.5, which is straightforward and the
proof of which is left to the reader. Let L ∈ Lq

d, and let G be a gap of L. Then for a
geolamination L̂ define G(L̂) as the gap of L̂ with the area of G(L̂) ∩G greater than half
the area of G (if such a gap exists) or ∅ otherwise. Clearly, G(L̂) is well-defined for any
L̂.

LEMMA 2.5. Let L ∈ Lq
d, and let G be a gap of L. Then for any geolamination

L̂ ∈ Lq
d close to L the gap G(L̂) is non-empty and such that G(L̂i) → G as L̂i → L.

Moreover, if σn
d (G) = G for some n, then σn

d (G(L̂)) = G(L̂) if L̂ is close to L.

A periodic leaf of a geolamination L ∈ Lq
d that is an edge of a gap has specific

properties.

LEMMA 2.6. Let L ∈ Lq
d, let G be a gap of L, and let ` be a periodic edge of G. Then

for all geolaminations L̂ ∈ Lq
d close to L their gaps G(L̂) are such that either ` is an edge

of G(L̂), or ` intersects the interior of G(L̂) and G(L̂) has an edge close to `. Moreover,
the following holds:

(1) If G is periodic of period n, then ` must be an edge of G(L̂) and either G is
finite, or the degree of σn

d |Bd(G) is greater than one.
(2) If ` is a common edge of gaps G,H of L then one of G,H is a Fatou gap of

degree greater than one and the other one is either a finite periodic gap, or a
Fatou gap of degree greater than one.

PROOF. Suppose that ` = ab and that σn
d (a) = a, σn

d (b) = b. If L̂ is sufficiently close
to L, then gaps G(L̂) exist by Lemma 2.5. By definition, G(L̂) has an edge ˆ̀ close to `.
If ˆ̀ 6= `, then ˆ̀ is disjoint from `, and ` is either disjoint or non-disjoint from the interior
of G(L̂). In the former case σn

d (ˆ̀) intersects the interior of G(L̂), a contradiction. Thus,
if ˆ̀ 6= `, then ` intersects the interior of G(L̂) and G(L̂) has an edge close to but disjoint
from `.

Let σn
d (G) = G. If L̂ is close to L, then by Lemma 2.5 the gapsG(L̂) are well-defined

and such that σn
d (G(L̂)) = G(L̂). If ` is not an edge ofG(L̂), then by way of contradiction

we may choose the edge ˆ̀ of G(L̂) with ˆ̀∩ ` = ∅, ˆ̀→ ` as L̂ → L while also having
that ` intersects the interior of G(L̂). Yet, this would imply that σn

d (G(L̂)) 6= G(L̂),
a contradiction. Moreover, suppose that G is not finite. Then G(L̂) is not finite either.
Indeed, G(L̂) is a periodic gap of a q-geolamination L̂, and ` is an edge of G(L̂). Hence
G(L̂) is either a finite gap (and then we may assume that it is the same gap for all L̂’s), or
a periodic Fatou gap of degree greater than one. On the other hand, G(L̂)→ G as L̂ → L.
This implies that either G is fixed and rigid, or, in the limit, the degree of σn

d |Bd(G) is
greater than one.

If ` is a common edge of two gaps G,H of L, a geolamination L̂ ∈ Lq
d close to L has

gapsG(L̂), H(L̂) close toG andH . By the aboveG(L̂) andH(L̂) must share the leaf ` as
their edge, hence ` is rigid. Since L̂ ∈ Lq

d, either these gaps are both periodic Fatou gaps
of degree greater than one or one of them is finite periodic and the other one is a periodic
Fatou gap of degree greater than one. Since L ∈ Lq

d, there is a sequence of geolaminations
Li → L,Li ∈ Lq

d. Hence L must have gaps G and H of the same types as desired. �

To study (pre)periodic leaves we need Lemma 2.7.
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LEMMA 2.7. Let L ∈ Lq
d, let G be a gap of L, let H = σk

d(G) be a gap, and let ˆ̀be
an edge ofH such that, for any geolaminations Li → L,Li ∈ Lq

d and their gapsHi → H ,
the leaf ˆ̀ is an edge of Hi for large i (e.g., this holds if ˆ̀ is a periodic edge of a periodic
gapH). If ` is an edge ofG with σk

d(`) = ˆ̀, then for any geolaminations Li → L,Li ∈ Lq
d

and any sequence of their gaps Gi → G, the leaf ` is an edge of Gi for large i. Thus, (1) a
(pre)periodic leaf of a gap that eventually maps to a periodic gap, is rigid, and (2) a finite
gap that eventually maps onto a periodic gap, is rigid.

PROOF. We use the notation introduced in the statement of the Lemma. By way
of contradiction let us assume that there is a sequence of σd-invariant q-geolaminations
Li → L with gaps Hi → H and Gi → G such that σk

d(Gi) = Hi and ` is not an edge of
Gi for all i (while ˆ̀ is an edge of all Hi). Then we can always choose an edge `i of Gi so
that `i → `. Then σk

d(`i)→ ˆ̀, and by the assumption σk
d(`i) = ˆ̀for large i. Since `i → `

this actually implies that `i = ` for large i as desired. �

For completeness, let us show that in some cases rigidity of pullbacks of rigid leaves
can be proven regardless of periodicity. By a polygon we mean a finite convex polygon. By
a (σd-)collapsing polygon we mean a polygon P , whose edges are chords of D such that
their σd-images are the same non-degenerate chord (thus as we walk along the edges of P ,
their σd-images walk back and forth along the same non-degenerate chord; as before, if it
does not cause ambiguity we simply talk about collapsing polygons). When we say that Q
is a collapsing polygon of a geolamination L, we mean that all edges of Q are leaves of L;
we also say that L contains a collapsing polygon Q. However, this does not imply that Q
is a gap of L as Q might be further subdivided by leaves of L inside Q.

LEMMA 2.8 (Lemmas 3.11, 3.14 from [BMOV13]). Let L be a sibling σd-invariant
geolamination. Suppose that L = `1 ∪ . . . `k is a concatenation of leaves of L such that
σd(`i) = `, 1 ≤ i ≤ k, for some non-degenerate leaf `. Then there exists a maximal
collapsing polygon P of L such that L ⊂ P and the σd-image of any edge of P equals `.
Moreover, any leaf of L whose image is `, is either disjoint from P or is contained in P .

Often rigid leaves of a limit geolamination give rise to rigid pullbacks.

LEMMA 2.9. Consider a lamination L ∈ Lq
d, a non-degenerate leaf ˆ̀of L, and a leaf

` of L with σk
d(`) = ˆ̀ for some k ≥ 0. If ˆ̀ is rigid and no leaf `, σd(`), . . . , σk−1(`) is

contained in a collapsing polygon of L, then ` is rigid.

PROOF. First we prove the lemma for k = 1. By way of contradiction suppose that
the leaf ` is not rigid. Then we may choose a sequence of σd-invariant q-geolaminations
Li → L such that ` is not a leaf of any of them. Since ˆ̀ is rigid, we may assume that ˆ̀ is
a leaf of all Li. By properties of σd-invariant q-geolaminations we may also assume that
there is a collection of d pairwise disjoint leaves `1, . . . , `d, all distinct from `, such that
all these leaves belong to every Li and map to ˆ̀under σd. Clearly, all leaves `i, 1 ≤ i ≤ d
also belong to L. Thus, the two endpoints of ` are also endpoints of two leaves, say, `i and
`j of L. The chain `i ∪ ` ∪ `j satisfies the conditions of Lemma 2.8. Hence, ` is contained
in a collapsing polygon of L, a contradiction. Induction now proves the lemma for any
k ≥ 1. �

Now we study rigidity of infinite periodic gaps. Consider the quadratic case. Suppose
that ` 6= 0 1

2 is a diameter of D and denote by A` the closed semi-circle based upon ` and
not containing 0. Let S` be the set of all points of S with entire orbits contained in A`. It is
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known that for an uncountable family of diameters ` the set S` is a Cantor set containing
the endpoints of `. Moreover, for these diameters ` the map σ2 restricted on Bd(CH(S`))
is semiconjugate to an irrational rotation and the set CH(S`) itself is called an invariant
Siegel gap. Call such diameters ` Siegel diameters.

It is easy to see that in fact for each Siegel diameter ` there exists the unique quadratic
lamination ∼`, of which CH(S`) is a unique invariant gap. In fact, if `i → ` is a sequence
of Siegel diameters converging to a Siegel diameter, then one can show that L∼`i

→ L∼`
.

On the other hand, if ` 6= ˆ̀are two distinct Siegel diameters, then S` 6= Sˆ̀. Thus, in this
case Siegel gaps are not rigid. Observe that the Siegel gaps described above do not have
periodic edges but do have critical edges.

It turns out that presence of critical edges of periodic gaps is necessary for their non-
rigidity. Recall that, for a gap G, a hole of G is an arc (a, b) such that ab is an edge of G
and (a, b) contains no points of G′; this hole of G is said to be the hole of G behind ab and
is denoted by HG(`).

LEMMA 2.10. Suppose that G is a periodic Fatou gap of a geolamination L ∈ Lq
d. If

no image of G has critical edges, then G is rigid.

PROOF. Suppose that G is of period k and degree r > 1 and that no eventual image
of G has critical edges. Without loss of generality we may assume that k = 1. We need
to show that if a sequence of σd-invariant q-geolaminations is such that Li → L, then for
some N and all i > N the gap G is a gap of Li. By Lemma 2.7 for any (pre)periodic edge
` of G there is N = N(`) such that ` is an edge of Gi. Choose the set A of all edges `
of G such that the holes HG(`) are of length greater than or equal to 1

d . Then there are
finitely many such edges of G. Moreover, by the assumption there are no critical edges in
A (because there are no critical edges of G at all).

Set A = S \
⋃

`∈AHG(`). It is easy to see that G′ is in fact the set of all points of the
circle that have their entire orbits contained in A. Indeed, it is obvious that all points of
G′ have their entire orbits contained in A. Now, take a point x ∈ A \ G′. Set I = HG(`)
to be a hole of G containing x. Since σd is expanding, for some minimal n we will have
that σn

d (`) ∈ A. At this moment x will be mapped outside A, which shows that x does no
belong to the set of all points of the circle that have their entire orbits contained in A. It
follows that if N is chosen so that, for any i > N , all edges of G belonging to A are also
edges of Gi, then Gi = G. �

GeolaminationsL that belong to the closure of the family of all σd-invariant q-geolaminations
admit a phenomenon, which is impossible for q-geolaminations, namely, they might have
more than two leaves coming out of one point of the circle.

DEFINITION 2.11. A family C of leaves ab sharing the same endpoint a is said to be
a cone (of leaves of L). The point a is called the vertex of the cone C; the set S ∩ C+ is
called the basis of the cone C and is denoted by C ′. We will identify C with C+. A cone
is said to be infinite if it consists of infinitely many leaves.

A few initial general results about cones of sibling σd-invariant geolaminations are
obtained in [BMOV13].

LEMMA 2.12 (Corollary 3.17 [BMOV13]). Let L be a sibling σd-invariant geolam-
ination and T ⊂ L+ be a cone of L consisting of two or three leaves with a common
endpoint v. Suppose that S ⊂ L+ is a cone of L with σd(S) = T such that and σd|S is
one-to-one. Then the circular orientation of the sets T ′ and S′ is the same.
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We are mostly interested in studying cones with periodic vertices (without loss of
generality we will actually consider cones with fixed vertices). A trivial case here is that
of a finite cone.

LEMMA 2.13. Let L be a sibling σd-invariant geolamination. If ab is a leaf of L with
periodic endpoints, then the periods of a and b coincide. In particular, if C is a finite cone
of L with a periodic vertex, then all points of its basis C ′ are of the same period.

PROOF. Let ab be a leaf of L with periodic endpoints. If a is of period n while b is
periodm > n, consider σn

d |C . Then the σn
d -orbit of ab is a finite cone with σn

d -fixed vertex
a which consists of more than one leaf such that all its leaves share the endpoint a and
are cyclically permuted. Since by Lemma 2.12 the circular order in the basis of a cone is
preserved under σn

d , we obtain a contradiction. This proves the first claim of the lemma.
To prove the second, suppose that C is a finite cone of L with a fixed vertex v that has

a non-periodic leaf vx. By definition of a sibling σd-invariant geolamination, there is a leaf
vy with σd(vy) = vx. If we now pull back the leaf vy, and then keep pulling back this
leaf, we will in the end obtain a branch of the backward orbit of vx consisting of countably
many leaves with all these leaves sharing the same endpoint a. This implies that C must
be infinite, a contradiction. �

Let us now study infinite cones with periodic vertex. We write a1 < a2 < · · · <
ak for points a1, a2, . . . , ak of the unit circle if they appear in the given order under a
counterclockwise (positive) circuit.

LEMMA 2.14. Let L be a sibling σd-invariant geolamination. Let C be an infinite
cone of L with periodic vertex v of period n. Then all leaves in C are either (pre)critical
or (pre)periodic, and C has the following properties.

(1) There are finitely many leaves va1, . . . , vak in C such that v = a0 < a1 < · · · <
ak < v = ak+1 and σn

d (ai) = ai for each i.
(2) For each i the set C ′ ∩ (ai, ai+1) is either empty or countable.
(3) If for some i, C ′ ∩ (ai, ai+1) 6= ∅, then all points of C ′ ∩ (ai, ai+1) have σn

d -
preimages in C ′ ∩ (ai, ai+1), no preimages elsewhere in C ′, and σn

d -images in
[ai, ai+1] ∪ {v}.

PROOF. Let v be σd-fixed. If ` is a leaf ofC, whose forward orbit consists of infinitely
many non-degenerate leaves, then the fact that σd is expanding implies that there will be
three distinct non-degenerate leaves va, vb and vc in C such that σd does not preserve
circular orientation on {a, b, c}, a contradiction with Lemma 2.12. This proves the first
part of the lemma and, hence, (2).

Now, (1) is immediate. To prove (3), assume that C ′ ∩ (ai, ai+1) 6= ∅ and choose
y ∈ C ′∩(ai, ai+1). By properties of sibling σd-invariant geolaminations vy has a preimage
vx from the same cone. By the choice of points ai, x 6= y. Moreover, by Lemma 2.12
x /∈ (v, ai) (otherwise the circular order is not preserved on {v, x, ai}) and x /∈ (ai+1, v)
(otherwise the circular order is not preserved on {v, x, ai+1}). Hence y ∈ (ai, ai+1).
Similarly using Lemma 2.12, we conclude that σd(y) ∈ [ai, ai+1] or σd(y) = v. �

In fact Lemma 2.12 implies a more detailed description of the dynamics on sets C ′ ∩
(ai, ai+1), which we prove as a separate lemma.

LEMMA 2.15. Let L be a sibling σd-invariant geolamination. Let C be an infinite
cone of L with periodic vertex v of period n. Let va1, . . . , vak be all leaves in C with
v = a0 < a1 < · · · < ak < v = ak+1 and σn

d (ai) = ai for each i. If, for some i,
C ′ ∩ (ai, ai+1) 6= ∅, then there are the following cases.
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(1) The map σn
d moves all points of C ′ ∩ (ai, ai+1) in the positive direction except

for those, which are mapped to v.
(2) The map σn

d moves all points of C ′ ∩ (ai, ai+1) in the negative direction except
for those, which are mapped to v.

(3) There exist two points u,w with ai < u ≤ w < ai+1 such that σn
d (u) =

σn
d (w) = v, C ′∩(u,w) = ∅, the map σn

d maps all points of (ai, u] in the positive
direction except for those, which are mapped to v, and all points of (w, ai+1] in
the negative direction except for those, which are mapped to v.

PROOF. We may assume that n = 1. Assume that neither case (1) nor case (2) holds.
Then there are points x, y ∈ (ai, ai+1) such that ai < x < σd(x) = y < ai+1 and
s, t ∈ (ai, ai+1) such that ai < t = σd(s) < s < ai+1. Take the first pullback vx1
of vx in C. By Lemma 2.12, ai < x1 < x. Repeating this construction, we will find a
sequence of leaves vxr of C, which are consecutive pullbacks of vx converging to vai in a
“monotonically decreasing” fashion. Similarly, we can find a sequence of leaves vsj of C,
which are consecutive pullbacks of vs converging to vai+1 in a “monotonically increasing”
fashion.

Applying Lemma 2.12 to pairs of leaves vxr, vsj we see that since for large r, j we
have ai < xr < sj < ai+1, then in fact x < y ≤ t < s. Now, take the greatest (in
the sense of the positive order on [ai, ai+1]) point x′ of C ′, which maps in the positive
direction by σd to the point y′ = σd(x′) ∈ [ai, ai+1] (clearly, x′ is well-defined). Then
take the smallest (in the sense of the positive order on [ai, ai+1]) point s′ ofC ′, which maps
in the negative direction by σd to the point t′ = σd(s′). By the above x′ < y′ ≤ t′ < s′.
By the choice of x′ the σd-image of y′ is v; similarly, σd(t′) = v. �

Observe that Lemmas 2.13 - 2.15 are proven for all sibling σd-invariant geolamina-
tions. In the case of limits of σd-invariant q-geolaminations we can specify these results.
First we consider finite cones.

LEMMA 2.16. LetL belong to the closure of the set of σd-invariant q-geolaminations.
Then a finite cone C of L with periodic vertex consists of no more than two leaves.

PROOF. Suppose otherwise. Then we may find three leaves vx, vy, vz in C with
x < y < z each of which is periodic and such that there are no leaves of L separating any
two of these leaves in D. Hence there are two periodic gaps G and H , which have vx, vy
and vy, vz as their edges, respectively. By Lemma 2.7 all these leaves are rigid. Hence
there exists a σd-invariant q-geolamination Lq , which is sufficiently close to L and such
that vx, vy, vz are leaves of Lq , a contradiction (clearly, a σd-invariant q-geolamination
cannot have three leaves with the same vertex as all its leaves are edges of convex hulls of
equivalence classes). �

Let us now consider infinite cones.
LEMMA 2.17. LetL belong to the closure of the set of σd-invariant q-geolaminations.

Let C be an infinite cone of L with periodic vertex v of period n. Let va1, . . . , vak be all
leaves in C with v = a0 < a1 < · · · < ak < v = ak+1 and σn

d (ai) = ai for each i. If, for
some i, C ′ ∩ (ai, ai+1) 6= ∅, then there are the following cases.

(1) The map σn
d moves all points of C ′ ∩ (ai, ai+1) in the positive direction except

for those, which are mapped to v.
(2) The map σn

d moves all points of C ′ ∩ (ai, ai+1) in the negative direction except
for those, which are mapped to v.
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Moreover, for some 0 ≤ r ≤ k + 1, the map σd maps points of C ′ ∩ (ai, ai+1) in the
negative direction for any 0 ≤ i ≤ r−1 and in the positive direction for any r ≤ i ≤ k−1.

PROOF. We may assume that n = 1. First, we claim that case (3) from Lemma 2.15
never holds. Indeed, suppose case (3) from Lemma 2.15 holds for some i. Choose a leaf
vx of L very close to vai. There are leaves v′x′ of σd-invariant q-geolaminations very
close to vx so that v′ ≈ v and x′ ≈ x. Since σd-invariant q-geolaminations cannot have
leaves with periodic endpoints, which are not periodic, v′ 6= v. By Lemma 2.2, v′x′ is
disjoint from vai. Since x maps in the positive direction in (ai, ai+1), then ai < v′ < v.
However, similar arguments applied to leaves vy with y ∈ (ai, ai+1), y ≈ ai+1 show that
Lq will have leaves v′′y′′ with endpoints v′′ ≈ v, v < v′′ < ai and y′′ ≈ y. Clearly, such
leaves v′x′ and v′′y′′ will cross, a contradiction.

The proof of the last claim is similar to the above. Suppose that for some i the map σd
moves points ofC ′∩(ai, ai+1) in the positive direction. Then by the previous paragraph all
σd-invariant q-geolaminations Lq have leaves v′t with v′ ≈ v being such that ai < v′ < v
and t ∈ (ai, ai+1) being sufficiently close to ai so that ai < t < σd(t) < ai+1. This
implies that, for any j > i with C ′∩ (aj , aj+1), the leaves v′′h of Lq , which are very close
to leaves of C connecting v and points in (aj , aj+1) must also have an endpoint v′′ ≈ v

with aj < v′′ < v (as otherwise these leaves would cross leaves v′t described above). This
implies that the endpoint h of v′′h is mapped in the positive direction by σd as otherwise
σd(v′′h) will cross v′′h. Since leaves v′′h approximate leaves of L this in turn implies that
points of C ′ ∩ (aj , aj+1) are mapped by σd in the positive direction. This completes the
proof. �

3. The Mandelbrot set as the quotient of the space of quadratic limit geolaminations

We begin with characterization of limits of q-geolaminations in the quadratic case. We
give an explicit description of geolaminations from Lq

2. It turns out that each such geolam-
ination L can be described as a specific modification of an appropriate q-geolamination
Lq from Lq

2. The full statement depends on the kind of q-geolamination Lq involved. For
brevity we introduce a few useful concepts below.

DEFINITION 3.1. By a generalized critical quadrilateral Q we mean either a 4-gon
whose σ2-image is a leaf, or a critical leaf (whose image is a point). A collapsing quadri-
lateral is a generalized critical quadrilateral with four distinct vertices.

The notion of generalized critical quadrilateral was used in [BOPT14] where we study
cubic (geo)laminations, in particular those of them, which have generalized critical quadri-
laterals as their critical sets.

DEFINITION 3.2. Two geolaminations coexist if their leaves do not cross.

This notion was used in [BOPT13]. Observe that, if two geolaminations coexist, then
a leaf of one geolamination is either also a leaf of the other lamination or is located in a
gap of the other geolamination, and vice versa.

DEFINITION 3.3. A σ2-invariant geolamination is called hyperbolic if it has a periodic
Fatou gap of degree two.

Clearly, if a σ2-invariant geolamination L has a periodic Fatou gap U of period n and
of degree greater than one, then the degree of G is two. By [Thu85], there is a unique
edge M(L) of U that also has period n. In fact this edge and its sibling M ′(L) are the
two majors of L while σ2(M(L)) = σ2(M ′(L)) = m(L) is the minor of L [Thu85]
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(recall that a major of a σ2-invariant geolamination is the longest leaf of L). Any σ2-
invariant hyperbolic geolamination L is actually a q-geolamination L∼ corresponding to
the appropriate hyperbolic σ2-invariant lamination ∼ so that the topological polynomial
f∼ considered on the entire complex plane is conjugate to a hyperbolic complex quadratic
hyperbolic polynomial; this justifies our terminology.

DEFINITION 3.4. A critical set Cr(L) of a σ2-invariant geolamination L is either a
critical leaf or a gap G such that σ2|G has degree greater than one.

A σ2-invariant q-geolamination L either has a finite critical set (a critical leaf, or a
finite critical gap) or is hyperbolic. In both cases, a critical set is unique. Lemma 3.5
shows that critical sets are important. This lemma easily follows from results in [Thu85];
for completeness we sketch a proof.

LEMMA 3.5 ([Thu85]). Suppose that L and L′ are σ2-invariant geolaminations such
that Cr(L) = Cr(L) and one of the following holds:

(1) Cr(L) has no periodic points;
(2) Cr(L) has more than two points;
(3) Cr(L) = c is a critical leaf with a periodic endpoint and there are two gaps G

and Ĝ, which share c as their common edge such that G and Ĝ are gaps of both
L and L′.

Then L = L′.

PROOF. Consider the collection L∗ of all leaves obtained by pulling back all leaves
from Cr(L) (and in case (3) also from G ∪ Ĝ). Any σ2-invariant geolamination satisfying
(1), (2) or (3) must contain L∗. Hence its closure L∗ = L′′ is contained in both L and L′.
Moreover, by [Thu85] L′′ is σ2-invariant, and by our construction Cr(L′′) = Cr(L) (and,
in case (3) contains G). Clearly, every gap of L′′ (except Cr(L) if it is a gap or G and Ĝ
in case (3)) either maps one-to-one to Cr(L) or maps one-to-one to a periodic gap.

Since Cr(L′′) = Cr(L), no leaves of L or L′ can be contained in Cr(L′′) = Cr(L) =

Cr(L′) or its preimages (in case (3) no leaves can be contained in G ∪ Ĝ or their L′′
preimages). Since the first return map on the vertices of a finite periodic gap is transitive
[Thu85] (i.e., all its vertices belong form one periodic orbit under the first return map), no
leaves ofL orL′ can be contained in a finite periodic gap ofL′′ or its preimages. Otherwise
a periodic gapH of L′′ may be a Siegel gap with exactly one (pre)critical edge. In this case
the first return map on the boundary of H is also transitive (similar to the case of a finite
periodic gap) in the sense that any point of H ∩ S has a dense orbit in H ∩ S under the first
return map. Hence the forward orbit of any chord inside H contains intersecting chords.
Thus, as before we see that no leaves of L or L′ can be contained in H or its preimages.
Finally, a periodic gap U of L′′ can be a Fatou gap of degree greater than one; however in
this case U is (pre)critical, and this case has been covered before.

We conclude that L = L′ = L′′ as desired. �

For convenience we state Corollary 3.6.

COROLLARY 3.6. If the critical set Cr(L) of a σ2-invariant geolamination L is a gap,
then the union of gaps of L that are pullbacks of Cr(L) is dense in L.

PROOF. Consider the collection L∗ of all edges of gaps of L which are pullbacks of
Cr(L). Its closure L∗ = L′′ is contained in L and is itself a σ2-invariant geolamination.
By Lemma 3.5(2), we have L′′ = L, as desired. �
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If Cr(L) is a generalized critical quadrilateral, then σ2(Cr(L)) = m(L). Lemma 3.7
shows the importance of sibling σ2-invariant geolaminations with generalized critical quadri-
laterals.

LEMMA 3.7. Suppose that a sequence of pairwise distinct σ2-invariant q-geolaminations
Li converges to a σ2-invariant geolamination L. Then m(Li) → m(L) and Cr(L) =
σ−12 (m(L)), which completely determines the geolamination L except when m(L) is a pe-
riodic point. In particular, only sibling σ2-invariant geolaminations with critical sets that
are generalized critical quadrilaterals can be limits of non-stabilizing sequences of σ2-
invariant q-geolaminations while σ2-invariant geolaminations with critical gaps of more
than four vertices are isolated in Lq

2.

PROOF. By definition of a major of a geolamination and of the convergence in the
Hausdorff metric, majors of Li converge to a major of L. Hence m(Li) → m(L). Now,
suppose that Cr(L) is not a generalized critical quadrilateral. Then by [Thu85] Cr(L)
has more than four vertices and σ2(Cr(L)) is a preperiodic gap. However, by Lemma 2.7,
the set Cr(L) is rigid, and hence geolaminations Li must have Cr(L) from some time on
as their critical set. This implies by Lemma 3.5 that all Li’s are equal, a contradiction.
If m(L) is not a periodic point, then, by Lemma 3.5, the fact that Cr(L) = σ−12 (m(L))
completely determines L. The rest of the lemma follows. �

Theorem 3.8 describes all geolaminations from Lq
2. A periodic leaf n such that the

period of its endpoints is k and all leaves n, σ2(n), . . . , σk−1
2 (n) are pairwise disjoint, is

said to be a fixed return periodic leaf.

THEOREM 3.8. A geolamination L belongs to Lq
2 if and only there exists a unique

maximal q-geolamination Lq coexisting with L, and such that either L = Lq or Cr(L) ⊂
Cr(Lq) is a generalized critical quadrilateral and exactly one of the following holds.

(1) Cr(Lq) is finite and the minor σ2(Cr(L)) = m(L) of L is a leaf of Lq .
(2) Lq is hyperbolic with a critical Fatou gap Cr(L) of period n, and exactly one of

the following holds:
(a) Cr(L) = ab is a critical leaf with a periodic endpoint of period n, and
L contains exactly two σn

2 -pullbacks of ab that intersect ab (one of these
pullbacks shares an endpoint a with ab and the other one shares an endpoint
b with ab).

(b) Cr(L) is a collapsing quadrilateral andm(L) is a fixed return periodic leaf.

Thus, any q-geolamination corresponds to finitely many geolaminations from Lq
2 and

the union of all of their minors is connected.

PROOF. Let L ∈ Lq
2 \ L

q
2. Then L = limLi, where Li ∈ Lq

2. By [Thu85], the minor
m(L) is a leaf m of LQML or an endpoint of such a leaf m, or a point m of S that is a class
of QML. Clearly, the full σ2-preimage σ−12 (m(L)) of m(L) is a collapsing quadrilateral
or a critical chord.

Suppose that m has no periodic vertices. Then by [Thu85] there is a unique σ2-
invariant lamination∼ such that T = Cr(L∼) is the convex hull of a∼-class and either (1)
T is a leaf and m = σ2(T ), or (2) T is a quadrilateral and m = σ2(T ), or (3) T has more
than four vertices, m is an edge of σ2(T ) which is a preperiodic gap all of whose edges
eventually map to leaves from the same cycle of leaves. Moreover, by [Thu85] the set
σ2(T ) is the convex hull of a class of QML. Finally, by [Thu85] for each pair of sibling
edges/vertices N,N ′ of T we can add their convex hull CH(N,N ′) to L∼ (i.e., insert
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two leaves connecting appropriate endpoints of N,N ′) and then all appropriate eventual
pullbacks of CH(N,N ′) to L∼ to create a σ2-invariant geolamination with σ2(N) as its
minor.

Observe that by Lemma 3.5 the geolamination with critical set CH(N,N ′) is unique.
Thus, all edges and vertices of σ2(T ) are minors of these σ2-invariant geolaminations
with collapsing quadrilaterals; moreover, the minor m(L∼) is also an edge of σ2(T ) and
serves as the minor of two σ2-invariant geolaminations (one of them is L∼, the other one
has the critical set CH(M,M ′) where M,M ′ are majors of L∼). On the other hand, by
[Thu85] the σ2-invariant geolaminations other than the just described have minors disjoint
from σ2(Cr(L∼)). Thus, our originally given geolamination L is one of the just described
geolaminations. Observe that m(L) is a vertex or an edge of σ2(T ) not coinciding with
σ2(T ) (if these two sets coincide, then Cr(L) = T and by Lemma 3.5, we have L = L∼,
a contradiction).

Let us show that in fact any σ2-invariant geolamination L̂ with critical set CH(N,N ′)
(here N,N ′ are sibling edges of T ) is the limit of a sequence of pairwise distinct σ2-
invariant geolaminations. Indeed, by [Thu85], each edge of T can be approached by non-
periodic leaves of LQML that are convex hulls of classes of QML, and each vertex of T
can be approached by a degenerate non-periodic class of QML. Choose the σ2-invariant
q-geolaminations for which these leaves/points are minors. We may assume that they con-
verge to a limit geolamination L′. This implies that L′ has a collapsing quadrilateral or a
critical leaf as the critical set (the limit of collapsing quadrilaterals/critical leaves is a col-
lapsing quadrilateral/critical leaf); clearly, this limit collapsing quadrilateral/critical leaf
must coincide with CH(N,N ′). By Lemma 3.5, this implies that L′ = L̂ as claimed.

Assume now that m has a periodic vertex of period n. Then, by [Thu85], there is
a σ2-invariant lamination ∼ with the following properties. The minor of L∼ is m, and a
major M of L∼ is an edge of a critical Fatou gap U = Cr(L∼) of period n. Recall that
the minor m(L) of L is either m itself, or an endpoint of m. By Lemma 3.7, we have
m(Li) → m(L), Cr(L) = σ−12 (m(L)), and if m(L) = m is non-degenerate, then, by
Lemma 3.7, the geolamination L is completely determined. Moreover, assume that M is
an edge of a finite periodic gap G of L∼ (informally speaking, U “rotates” about G under
the appropriate power of σ2). If m(L) = m, then L has two finite gaps G and σ−12 (m)
sharing a periodic edge M , a contradiction with Lemma 2.6. Moreover, assume that M is
“flipped” by the appropriate power, say, σk

2 of σ2 (then U maps by σk
2 to σk

2 (U), which
shares M with U as their common edge). In this case L has gaps σ−12 (m) and σk

2 (U) that
share a periodic edge M , again a contradiction with Lemma 2.6.

To sum it all up, if m(L) = m and hence by Lemma 3.7 we have Cr(L) = σ−12 (m),
thenmmust have pairwise disjoint images until it maps back to itself by σn

2 . By Lemma 3.7,
the geolamination L is completely determined by the fact that Cr(L) = σ−12 (m) (actually,
L can be constructed by pulling back the quadrilateral σ−12 (m) in a fashion consistent with
L∼). On the other hand, if m has pairwise disjoint images until it maps back to itself by
σn
2 , then, by [Thu85], the minor m can be approached by pairwise disjoint minors of σ2-

invariant q-geolaminations. Assuming that these geolaminations converge, we see that the
thus created limit geolamination must coincide with the above described geolamination L.
This covers case (2-b).

To consider case (2-a), assume that m(L) is an endpoint of m. By Lemma 3.7, we
have Cr(L) = σ−12 (m(L)), and by the assumption we may set Cr(L) = ab where a is an
endpoint of M . Properties of L∼ imply that there exist unique pullbacks of ab under the
maps σ2, σ2

2 , . . . , σ
n−1
2 with endpoints σn−1

2 (a), σn−2
2 (a), . . . , σ2(a). However there are
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two possible pullbacks of ab coming out of a. It is easy to see that these two chords are
contained in U on distinct sides of ab. However they both cannot be leaves of L. Indeed,
all leaves of L with endpoint a form a cone, and if both chords are leaves of L, we will
have a contradiction with Lemma 2.17. Consider both cases separately and show that the
corresponding geolamination L is completely determined by the choice of the σn

2 -pullback
leaf of ab with endpoint a. For definiteness, assume that M = xa where (x, a) is a hole of
U (i.e., (x, a) ∩ U ′ = ∅) and let M ′ = x′b be the edge of U , which is the sibling leaf of
M .

(1) Assume that ad, a < d < b is the σn
2 -pullback of ab with endpoint a contained in

U . Then the sibling bd′ of ad is also a leaf of L. Pulling it back under σn
2 , we see that there

is a concatenation L of σn
2 -pullbacks of bd′, which accumulates to x. Moreover, suppose

that L has a leaf by where x < y < a, y ≈ a. Then it follows that σn
2 (by) crosses by,

a contradiction. Hence such chords are not leaves of L, which implies that L has a gap
G with vertices a, b and other vertices belonging to (b, a). By properties of σ2-invariant
geolaminations there exists the “sibling gap” Ĝ of G located on the other side of ab (Ĝ is
actually a rotation of G by half of the full rotation). Moreover, the existence of L implies
that G has an edge bz and one of the following holds: either (a) z = d′, or (b) x ≤ z < a.
It turns out that either of these two cases is realized depending on the dynamics of M ;
moreover, we will show that to each of the cases corresponds a unique geolamination,
which is completely determined by the choices we make.

(a) Assume thatM is a fixed return periodic leaf. Let us show that then z = x. Indeed,
by Corollary 3.6, pullbacks of U are dense in L∼. In particular, there are pullbacks of U
approximating M from the outside of U . Each pullback of U which is close to M has two
long edges, say, N and R, which converge to M as pullbacks in question converge to M .
Choose the pullback V of U so close to M that N and R are longer than the two edges of
CH(M,M ′) distinct from M,M ′. Let us show that N and R are themselves pullbacks of
M and M ′. Indeed, let N ′ and R′ be the sibling leaves of N and R. By the Central Strip
Lemma (Lemma II.5.1 of [Thu85]) and by the choice of the pullback of U very close to
M we see that when, say, N enters the strip between N and N ′ it can only grow in size.

Repeating this argument, we will finally arrive at the moment when V maps to U
when by the above N and R will map to M and M ′. This implies that there exists a chord
connecting the appropriate endpoints of N and R and mapping to ab at the same moment.
In other words, this shows that there are chords very close to M which map onto ab under
a certain iteration of σ2 and are disjoint from U before that. Hence these chords must be
leaves of L. Since by construction they accumulate upon M , we see that M must be a leaf
of L. Therefore d′ ≤ z ≤ x.

Now, assume that z = d′. Then the properties of geolaminations easily imply that L
is a part of the boundary of G and that σn

2 (G) = G. We claim that the only σn
2 -critical

edge of G is ab. Indeed, no edge of G from L is σn
2 -critical. On the other hand, if ` ⊂ K

is a σn
2 -critical edge of G, then a forward image σi

2(`), 0 < i < n of ` must coincide with
ab. However, this would imply that either σi

2(G) = G (contradicting the fact that i < n

and the period of G is n) or σi
2(G) = Ĝ (contradicting the fact that Ĝ is not periodic).

By Lemma 2.6(1) edges of G cannot be periodic. Consider the rest of the boundary of
G whose vertices belong to [x, a]; denote this subarc of Bd(G) by K. Since x and a are
σn
2 -fixed and the degree of σn

2 on Bd(G) is one, then σn
2 (K) = K. Hence it follows thatK

contains neither (pre)periodic nor (pre)critical edges of G, a contradiction to Lemma 1.13.
Assume next that z 6= d′ is a vertex of L. Then σ2(zb) = σ2(z)a which crosses

bz, a contradiction. This leaves the only possibility for z, namely that z = x and so
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G = CH(a, b, x) and Ĝ = CH(a, b, x′). Since ab is isolated in L, we can remove it
from L and thus obtain a new geolamination L′ which, as follows from Lemma 3.5, is
completely determined by the critical quadrilateral CH(a, x, b, x′). Adding ab and all its
pullbacks to L′ we finally see that L is completely determined by the fact that ad is a
leaf of L and the fact that M is a fixed return periodic leaf. In fact, L can be viewed
as the σ2-invariant geolamination determined by the choice of the collapsing quadrilateral
CH(M,M ′) and then inserting in it the critical leaf ab.

(b) If M is not a fixed return periodic leaf, there are two subcases: (i) the orbit of M
is the union of edges of several finite gaps permuted by the corresponding power of σ2,
and (ii) n = 2k and M is “flipped” by σk

2 . Since the arguments are very similar, we only
consider the case (i). Assume that n = kl and that the orbit of M consists of edges from
the boundaries of k pairwise disjoint l-gons D1, . . . , Dk, cyclically permuted under σ2.

We claim that M is not a leaf of L. Suppose otherwise. Then there are two gaps
of L which share M as their edge. On the one side of M it is a finite l-gon, say, D1

with edge M , one of the above mentioned l-gons. On the other side of M , it is the gap
G constructed above. Since G cannot be a periodic Fatou of degree greater than one (it
is either a collapsing triangle CH(a, b, x) or an infinite gap with concatenation L on its
boundary), we get a contradiction with Lemma 2.6. Thus, M and no leaf from its orbit is
a leaf of L.

By pullingL back an appropriate number of times, we obtain a gapG, whose boundary
consists of l pullbacks of L concatenated to each other at vertices ofD1; observe again that
the edges ofD1 are not leaves of L. This also defines the gap Ĝ. Observe that the existence
of these two gaps by Lemma 3.5 completely determines the corresponding geolamination
as pullbacks of all leaves are now well-defined.

(2) Assume that da, where b < d < a, is the σn
2 -pullback of ab with endpoint a

contained in U . Then the sibling d′b of ad is also a leaf of L. Pulling d′b back under
σn
2 , we see (similarly to (1) above) that there is a concatenation L′ of σn

2 -pullbacks of d′b
with endpoints contained in (a, x′); clearly, L′ converges to a. Clearly, L′ together with
the leaves d′b and ba form a Jordan curve. It is easy to verify that any chord connecting
two non-adjacent vertices of L′ will cross itself under σn

2 . On the other hand, the leaf ad′

cannot exist by Lemma 2.17 (recall that ad ∈ L). Thus, this Jordan curve is in fact the
boundary of a gap G of L. The centrally symmetric to it “sibling gap” Ĝ together with
G forms a pair of gaps which L must have. By Lemma 3.5 this completely determines
the geolamination L. Note that in this case pullbacks of ad converge to M and hence M
belongs to L.

Clearly, the same arguments would apply if m(L) were the other endpoint of m.
This completes the description of possible limits of σ2-invariant q-geolaminations with
minors contained in a periodic minor m from L∼. We see that to each pair of possible
σn
2 -pullbacks of ab there is a unique geolamination which potentially can be the limit of a

sequence of σ2-invariant q-geolaminations. To show that all the described geolaminations
are indeed limits of sequences of σ2-invariant q-geolaminations, we need to show that each
pair of defining pullbacks of ab is possible and that the geolamination described in (2-b) is
also the limit of a sequence of σ2-invariant q-geolaminations.

To prove the latter, note that by [Thu85] we can approximate the fixed return periodic
major M of L by majors Mi of σ2-invariant q-geolaminations Li → L (Mi’s are outside
the critical Fatou gap of L). Then by Lemma 3.7 the collapsing quadrilateral CH(M,M ′)
is the critical set of L and L is uniquely determined by that. This completes (2-b).
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Consider now (2-a). Assume thatm is a periodic minor, M = xa is the corresponding
periodic major, ab is the critical leaf, x < a < b, the points a, x are of period n, and
we want to show that the σ2-invariant geolamination L with σn

2 -pullbacks of ab being
ad, d′b with b < d′ < a < d described above is the limit of a sequence of σ2-invariant q-
geolaminations. To show that, consider a critical leaf ` = a1b1 with a1 < a < b1 < b very
close to ab. Then the fact that a is repelling for σn

2 shows that the appropriate σn
2 -pullbacks

of ab are indeed close to ad and d′b, and converge to ad and d′b as ` → ab. Moreover,
` can always be chosen to correspond to a σ2-invariant q-geolamination of which ` will
be the critical leaf (the convex hull of the critical class of the corresponding lamination).
Thus, these particular pullbacks can be realized on a limit geolamination. Equally simple
arguments show that in fact all possibilities listed in the theorem can be realized. �

To interpret the Mandelbrot set as a specific quotient of the closure Lq
2 of the family

Lq
2 of all σ2-invariant q-geolaminations, we define a special equivalence relation on Lq

2.
The definition itself is based upon the fact that by Lemma 3.7 any geolamination from
Lq
2 either belongs to Lq

2 or has a critical leaf, or has a critical quadrilateral (σd-invariant
geolaminations with similar properties are called quadratically critical geolaminations, or
simply qc-geolaminations [BOPT14]).

DEFINITION 3.9. Let L′,L′′ ∈ Lq
2. Then the geolaminations L1 and L2 are said to

be minor equivalent if there exists a finite collection of geolaminations L1 = L′, L2, . . . ,

Lk = L′′ from Lq
2 such that for each i, 1 ≤ i ≤ k − 1 the minors m(Li) and m(Li+1) of

the geolaminations Li and Li+1 are non-disjoint.

Theorem 3.8 allows one to explicitly describe classes of minor equivalence. Namely,
by [Thu85] and Theorem 3.8 to each class g of QML we can associate the corresponding
σ2-invariant q-geolamination Lg and finitely many limit geolaminations L of non-constant
sequences of σ2-invariant q-geolaminations Li such that the minor m(L) is the limit of
minors m(Li) of Li and is non-disjoint from (actually, contained in) CH(g). Let ψ :

Lq
2 → S/QML be the map which associates to each geolamination L ∈ Lq

2 the QML-class
of the endpoints of the minorm(L) of L. By Lemma 3.7, we obtain the following theorem.

THEOREM 3.10. The map ψ : Lq
2 → S/QML is continuous. Thus, the partition of Lq

2

into classes of minor equivalence is upper semi-continuous and the quotient space of Lq
2

with respect to the minor equivalence is homeomorphic to S/QML.
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